童先锋(崇真中学)-数学:《直线与圆》
发布时间:2018年12月07日    来源:本站原创    点击数:     

童先锋,中国民主同盟盟员,张家港市第十一届、十二届政协委员,中小学高级教师,张家港市学科带头人,张家港市崇真中学副校长,新青年数学教师工作室苏州分站成员。

点评

课题:直线与圆点评

张家港市沙洲中学  罗建宇

纵观江苏高考考试说明,直线与圆的位置关系一直是B级要求,结合历年高考考题的数量与位置,直线与圆一般都以中档或较难的题型出现,是高考的热点问题.而且由于其处于填空题或者解答题承上启下位置,更是同学否取得佳绩的关键和保障(做得好就有信心和时间去挑战最后压轴题,做得不好可能影响情绪甚至导致失常发挥),因此,选择“直线与圆”中的一类典型问题进行研究,比较贴近本次教改主题“适合教育,协同学习”。

本节课主线围绕“直线 和圆 是不是一般意义上笼统的相切、相交、相离关系”展开。首先,通过展示历年高考试题涉及“直线与圆”考题题号,让学生明确复习的目标和要求,并展望和预测2019年考题情况,鼓励学生信心和勇气直面解决“硬骨头”。而后,通过从数学实验、数学运算(逻辑证明)、几何直观分析(向量的数量积)等三个维度对此问题进行深入探究,师生共同讨论,从而引出高观点下“极点和极线”概念。最后,回归教材、模考、高考习题,让学生感悟到,其实许多高考(模考)题都是以极点和极线的背景编制的,只是未出现这个名称而已,今后可以“高观点”下探究相关方程和曲线问题,增强发现和提出、分析和解决问题的能力,从而帮助实现“大题小做,小题巧做”.

此外,对于数学实验,长期以来,人们以为物理、化学需要实验,而数学不需要实验,这其实是一种误解.数学“好玩”才能“玩好”数学.我们的祖先从结绳计数开始就在进行着数学实验,并且通过实验不断地发展数学.本节课教学过程中多次尝试由问题引入进而实验探究的教学模式不失为一次有意义的尝试,师生共同就问题结论进行观察现象、度量数据、分析统计、归纳总结、猜想验证、得到结论,进而形成“猜想”→“演示”一“证明”一“探究”的教学模式,课堂上学生自始至终保持着浓厚的学习(研究)兴趣,不再把学习数学看成负担,不再把数学作为单纯的知识去理解,大大提高课堂效率,教学效果也相对较好,给学生留下印象也更为深刻。

CopyRight @ 2018 版权所有 www.zjgedu.cn All Right Reserved